In-vitro and in-vivo combined effect of ARQ 092, an AKT inhibitor, with ARQ 087, a FGFR inhibitor
نویسندگان
چکیده
The PI3K/AKT pathway plays an important role in the initiation and progression of cancer, and the drug development efforts targeting this pathway with therapeutic interventions have been advanced by academic and industrial groups. However, the clinical outcome is moderate. Combination of inhibition of PI3K/AKT and other targeted agents became a feasible approach. In this study we assessed the combined effect of ARQ 092, a pan-AKT inhibitor, and ARQ 087, a pan-FGFR inhibitor, in vitro and in vivo. In a panel of 45 cancer cell lines, on 24% (11 out of 45) the compounds showed synergistic effect, on 62% (28 out of 45) additive, and on 13% (6 out of 45) antagonistic. The highest percentage of synergism was found on endometrial and ovarian cancer cell lines. Mutational analysis revealed that PIK3CA/PIK3R1 mutations and aberrant activation of FGFR2 predicted synergism, whereas Ras mutations showed a reverse correlation. Pathway analysis revealed that a combination of ARQ 092 and ARQ 087 enhanced the inhibition of both the AKT and FGFR pathways in cell lines in which synergistic effects were found (AN3CA and IGROV-1). Cell cycle arrest and apoptotic response occurred only in AN3CA cell, and was not seen in IGROV-1 cells. Furthermore, enhanced antitumor activity was observed in mouse models with endometrial cancer cell line and patient-derived tumors when ARQ 092 and ARQ 087 were combined. These results from in-vitro and in-vivo studies provide a strong rationale in treating endometrial and other cancers with the activated PI3K/AKT and FGFR pathways.
منابع مشابه
Preclinical Activity of ARQ 087, a Novel Inhibitor Targeting FGFR Dysregulation
Dysregulation of Fibroblast Growth Factor Receptor (FGFR) signaling through amplifications, mutations, and gene fusions has been implicated in a broad array of cancers (e.g. liver, gastric, ovarian, endometrial, and bladder). ARQ 087 is a novel, ATP competitive, small molecule, multi-kinase inhibitor with potent in vitro and in vivo activity against FGFR addicted cell lines and tumors. Biochemi...
متن کاملMulti-Chemotherapeutic Schedules Containing the pan-FGFR Inhibitor ARQ 087 are Safe and Show Antitumor Activity in Different Xenograft Models1
ARQ 087 is a multi-tyrosine kinase inhibitor with potent activity against the FGFR receptor family, currently in Phase I clinical studies for the treatment of advanced solid tumors. The compound has a very safe profile and induces tumor regressions in FGFR-driven models. The feasibility of combining ARQ 087 with chemotherapy was investigated in FGFR deregulated human xenografts. Nude mice were ...
متن کاملTargeting AKT1-E17K and the PI3K/AKT Pathway with an Allosteric AKT Inhibitor, ARQ 092
As a critical component in the PI3K/AKT/mTOR pathway, AKT has become an attractive target for therapeutic intervention. ARQ 092 and a next generation AKT inhibitor, ARQ 751 are selective, allosteric, pan-AKT and AKT1-E17K mutant inhibitors that potently inhibit phosphorylation of AKT. Biochemical and cellular analysis showed that ARQ 092 and ARQ 751 inhibited AKT activation not only by dephosph...
متن کاملCombination of AKT inhibitor ARQ 092 and sorafenib potentiates inhibition of tumor progression in cirrhotic rat model of hepatocellular carcinoma
The prognosis of patients with advanced hepatocellular carcinoma (HCC) is very poor. The AKT pathway is activated in almost half of HCC cases and in addition, long term exposure to conventional drug treatment of HCC, sorafenib, often results in over-activation of AKT, leading to HCC resistance. Therefore, it is important to assess the safety and the efficacy of selective allosteric AKT inhibito...
متن کاملIn vivo efficacy of the AKT inhibitor ARQ 092 in Noonan Syndrome with multiple lentigines-associated hypertrophic cardiomyopathy
Noonan Syndrome with Multiple Lentigines (NSML, formerly LEOPARD syndrome) is an autosomal dominant "RASopathy" disorder manifesting in congenital heart disease. Most cases of NSML are caused by catalytically inactivating mutations in the protein tyrosine phosphatase (PTP), non-receptor type 11 (PTPN11), encoding the SH2 domain-containing PTP-2 (SHP2) protein. We previously generated knock-in m...
متن کامل